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Classical analyses of torsional static instability, or divergence, of airfoils or bridge decks in
a #uid #ow, based on the use of linearized aerodynamic coe$cients, lead to a Sturm}Liouville
eigenvalue problem* see, e.g., Bisplingho!& Ashley (1962). Solution to this problem predicts
a critical value of the #ow speed, such that exceeding this threshold would lead to unlimited
growth of twist angles. Most structures are usually designed so as to exclude this instability
completely. In some cases, however, such a design requirement may become violated * for
example, if some accident happens with the structure involved. Furthermore, it may sometimes
be unreasonable or impractical to impose this requirement for civil engineering structures for
the case of a possible very strong storm, which has a small but nonzero probability of
occurrence. For all such cases the nonlinear analysis of the postcritical stress/strain state seems
to be crucial for predicting structural reliability. ( 1999 Academic Press
THE NONLINEARITY, WHICH MAY RESTRICT THE GROWTH of twist in case of a static instability,
may be due to the basic aerodynamic forces involved. It is well known, that the lift force
starts to exhibit &&softening'' nonlinearity, and it may even start to decrease eventually with
increasing angle of attack. Thus, an equilibrium postcritical state may be established for
a given supercritical #ow speed, which leads to the instability of the initial shape of the
structure, or buckling. It is this kind of nonlinearity that is accounted for in this paper, with
the aim of predicting the (limited) growth of twist rate and twist angle with increasing #ow
speed beyond its threshold value.

Consider a uniform prismatic bar of length l with "xed ends. If it is exposed to
a cross-#ow, the resulting aerodynamic lift would provide a torque, which would twist the
bar, until balanced by the torque due to elastic stresses in the bar. The condition for balance
of these two torques may be written as (Bisplingho! & Ashley 1962)

GJ (d2h/dy2)#qc
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Here coordinate y is measured along the bar axis, with the coordinates of the ("xed) ends
being y"0 and y"l, whereas h (y) is the twist angle, which is also the angle of attack as
long as the latter is assumed to be zero in the untwisted state, GJ is the torsional sti!ness of
the bar, c

e
the o!set of the aerodynamic center from the elastic axis of the bar, q the dynamic
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pressure (with o and < being the #uid density and #ow speed, respectively); all these
parameters are assumed to be constant along the bar axis, C

L
is the lift coe$cient. Whilst

this coe$cient can be used directly for a streamlined cross-section, it should be replaced by
an e!ective vertical force coe$cient C

y
"C

L
#C

D
sin a for a blu! body, to account for

a drag force* see, e.g., Blevins (1994). Here C
D

and a are the drag coe$cient and the angle
of attack, respectively. For the resulting vertical force coe$cient, the following dependence
on the angle of attack will be adopted in this paper:
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where RC
L
/Ra is the ordinary lift coe$cient slope, which corresponds to the linearized lift

curve for small angles of attack. The curve given by equation (2) is qualitatively similar to
certain typical lift curves for blu! bodies, and may be used to approximate experimentally
obtained curves within limited ranges of h*particularly if the two-term power-series (cubic)
approximation is adequate for the second cofactor, which reduces to h[1!(4/3) (kh)2] for
small h. The resulting simple explicit relations between (postcritical) #ow speed and twist
rate seem to be important for stochastic reliability analyses for cases of a time-variant #ow
speed.
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equation (1), together with the boundary conditions for "xed ends may be rewritten as

h@@#f (h)"0, h(0)"h (1)"0 , (4)

where primes denote di!erentiation with the nondimensional coordinate yN . For vanishingly
small k (or h) this boundary-value problem clearly reduces to a simple linear eigenvalue
problem, with the smallest eigenvalue j"n providing the critical speed for divergence. In
this paper the exact analytical solution is obtained to boundary-value problem (4), based on
the following solution for free oscillations (or free waves) as derived by Nesterov (1978):

h (yN )"k~1 arc sinh Csinh (kh* ) sinA
jyN

cosh kh*BD . (5)

Here h* is an arbitrary integration constant; its physical meaning is that it is the amplitude,
or maximal magnitude, of solution (5), which is periodic with period

¹"A
2n
j B cosh kh* . (6)

The other integration constant (phase) in solution (5) is zero, as long as the initial
condition h(0)"0 is satis"ed.

In boundary-value problem (4) the response period is given, whereas the response
amplitude, or maximal twist angle, should be obtained. This maximum is clearly attained at
the midspan, i.e., h*"h (1

2
), and because of symmetry the condition ¹/4"1

2
may be

imposed instead of the second boundary condition in (4). Then, using formula (6), the
following expression for response amplitude, or twist angle at midspan, is obtained:

cosh kh*"
j
n

, h*"k~1 arc coshA
j
nB"k~1 ln A
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whereas solution (5) is reduced to

h (yN )"k~1 ln [(Jj2/n2!1 ) sin (nyN )#J1#(j2/n2!1) sin2nyN )] (8)

Here a logarithmic representation of the inverse hyperbolic functions was used, together
with relations for the hyperbolic functions (Abramowitz & Stegun 1972). Expression (8)
describes the postcritical twist of the bar for any given j'n, i.e., for a given postcritical #ow
speed. (If this inequality is not satis"ed, twist is zero everywhere, which corresponds to the
subcritical case with a stable untwisted shape of the bar.)

Di!erentiating expression (8) yields the twist rate, which is proportional to the shear
stresses:

h@"
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Jj2!n2

k B cos (nyN )

S1#A
j2
n2

!1B sin2 (nyN )
, (9a)

so that

h@
.!9

"h@(0)"k~1Jj2!n2 . (9b)

It may be of some interest to compare these exact results with those obtained by a simple
harmonic balance, or Galerkin-type approximation. A simple half-wave of sinusoid may be
used as a trial function, or assumed mode, so that a solution is sought of the form

h (yN )"h* sin (nyN ), (10a)

and thus

h@ (yN )"nh* cos (nyN ) , (10b)

which satis"es both boundary conditions. Expression (10a) is substituted into the left-hand
side of equation (4) together with its second derivative. Whilst the equation is certainly not
satis"ed exactly, according to the harmonic balance approximation it may be satis"ed in the
averaged sense (over a period). Namely, the left-hand side of equation (4) is multiplied by
the assumed mode sin (nyN ) and integrated within [0, 1]. Equating this integral to zero, yields
the following equation for the unknown twist amplitude h* :

h*A
n
2B"

1
:
0

f (h* sinnyN ) sin (nyN ) dyN .

Using here the expression for f as de"ned in (3) and retaining the "rst three terms in the
power series expansion for the hyperbolic tangent (Abramowitz & Stegun 1972) yields the
following quartic equation for the scaled twist amplitude A"kh* :

A4!(16
3

) A2#(16
3

) (1!n2/j2 ), (11a)

so that

A2"(8
3
[1!J1!(3

4
) (1!n2/j2) ] ; (11b)

(using, properly, the negative sign for solution of the quadratic equation forA2 yields AP0
with jPn#0.)

In Figure 1(a) the approximate solution (11b) is compared with the exact results,
calculated from the last expression (7). Similarly, in Figure 1(b) the approximate, scaled
maximal twist rate kh@

.!9
"nA [see expression (10b)] is compared with the exact one as



Figure 1. (a) Scaled maximal twist angle A"kh* and (b) scaled maximal twist rate kh@
.!9

, as functions of the
#ow speed parameter j within the postcritical state. Solid lines represent exact results; dashed lines are results

based on the harmonic-balance approximation (11b).

782 M. DIMENTBERG
governed by expression (9b). Both sets of curves illustrate the increasing inaccuracy of the
approximate approach with increasing j (moving deeper into the domain of instability
increases the apparent nonlinearity). Furthermore, as could be expected, inaccuracy in twist
rate is larger than in twist angle. On the other hand, with j/nP1#0 equation (7) for A and
the approximate expression (11b) both are clearly reduced to

A"S1!A
n
jB

2
, (12)

whereas equation (9) reduces to the corresponding approximate formula for nA. The simple
formula (12) may be regarded then as a &&universal'' law for postcritical behavior for small
excess #ow speeds, valid for any arbitrary and smooth f (h)*up to a constant factor as
de"ned by the coe$cient of the cubic term in its power series expansion.

The above solution may be used for the case where only a symmetric middle part of the bar is
exposed to the #ow. The length of this part is denoted by l, and that of the whole bar by ¸ (see
Figure 2). Within the unexposed part of the bar the twist-angle distribution is linear, resulting in
the following matching condition at point C, i.e., at the left end of the exposed part:

h"C
(¸!l)

2 DA
dh
dyB at y"(¸!l )/2 , (13)

where the coordinate y has its origin at the "xed end of the bar.



Figure 2. Schematic distribution of twist angle in a bar of length ¸ in case where only its part of length l is
exposed to a #uid #ow (solid line). An extension of the middle part, which corresponds to a fully exposed bar of

length ¸@, is also shown (dashed lines).
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To solve the resulting problem for a fully exposed bar of length l with elastically
supported ends, consider it as a part of an auxiliary extended fully exposed bar with "xed
ends. The extensions, shown in the Figure 2 by dashed lines, are generated according to the
matching condition (13). This condition is used to calculate the resulting length ¸@ of the
auxiliary fully exposed bar. A new coordinate along the bar axis is introduced as
z"y!(¸!¸@)/2, with its origin O@ at the left ("xed) end of the fully exposed bar.
Introducing the new nondimensional coordinate as zN"z/¸@"z/kl, where k"¸@/l , we may
directly apply equations (7)} (9) to the extended bar, by replacing yN by zN and j by jI "kj
[where k'1 and primes denote derivatives with respect to zN , whereas j is still de"ned by
the last expression (3)]. The matching condition (13) is imposed at z"(¸@! l )/2¸@, or
zN"(1

2
) (1!1/k). Substituting equations (8) and (9), properly adjusted as described, into

equation (13) then yields the equation for k"¸@/l:

ln M(J(kj/n) 2!1) sin [(n/2) (1!1/k )]#J1#[(kj/n)2!1] sin2 [(n/2) (1!1/k)]N

"(n/2k) ((¸!l )/l)S
(kj/n)2!1

1#[(kj/n)2!1] sin2 [(n/2) (1!1/k )]
cos [(n/2) (1!1/k)] ,

(14)

which is valid provided that kj/n'1 (the condition for divergence). For vanishingly small
(positive) values of (kj/n) 2!1, equation (14) reduces to

tan [(n/2) (1!1/k
0
)]"(n/2k

0
) (¸!l )/l , (15)

where subscript zero is used for this special case, which corresponds to the linear eigenvalue
problem. Solution of equation (15) leads immediately to the critical #ow speed for diver-
gence via formula j

#3*5
"n/k

0
. Analysis of the postcritical state of the bar is based on

numerical solution of equation (14) for k, for various j'j
#3*5

and several assigned values of
(¸!l )/l. The results are presented in Table 1. One can see that the length ¸@ of the
corresponding auxiliary fully exposed bar decreases with increasing #ow speed, but this
decrease is not large, particularly for relatively large exposed parts of the original bar: when
(¸!l )/l"0)5, the value of k remains almost the same as obtained from equation (15) for
the linear eigenvalue problem.



TABLE 1

Nondimensional length k"¸@/l of an auxiliary fully exposed
bar with "xed ends as a function of the #ow speed parameter
j for three di!erent values of (¸!l)/l. Bold symbols are used
for the critical values, which correspond to the instability thre-

shold of the linearized system

(¸!1)/l 2 1 0)5
j k k k

1)3065 2)4050 * *

1)40 2)37930 * *

1)7207 * 1)8258 *

1)80 2)28931 1)81802 *

2)00 2)25246 1)79943 *

2)1536 * * 1)4587
2)20 2)21973 1)78220 1)45741
2)50 2)17682 1)75865 1)44931
2)80 2)13983 1)73751 1)44140
3)10 2)10750 1)71845 1)43375
3)40 2)07893 1)70117 1)42639
3)70 2)05342 1)68542 1)41935
4)00 2)03047 1)67100 1)41263
4)30 2)00967 1)65774 1)40622
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As long as the length of the auxiliary bar with "xed ends is established, adjusted formulae
(7)}(9) may be applied to the central (exposed) part of the original bar. Whilst the maximum
of the twist angle is still attained at the midspan, the maximum twist rate is attained at the
left end of the exposed zone, or at zN"(1

2
) (1!1/k) in expression (9), as modi"ed by

replacing yN by zN and j by kj. This maximal twist rate is observed within the whole
unexposed part of the bar.

The general asymmetric case of a bar with both supports having unequal "nite sti!nesses
may be handled by using the complete solution

kh (yN )"arc sinh Msinh kh*[B sin (jyN /cosh kh* )#C cos (jyN /cosh kh* )]N, (16)

where B and C are integration constants, satisfying the relation B2#C2"1.
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